【解答】
(ii)より
\begin{eqnarray}
\log \frac{a_n}{a_{n-1}} & = & \log \frac{n-1}{n+1} \\
∴\frac{a_n}{a_{n-1}} & = & \frac{n-1}{n+1} \cdots ①
\end{eqnarray}
①の右辺の分母分子に\( n \) をかけると、
\begin{eqnarray}
\frac{a_n}{a_{n-1}} & = & \frac{(n-1)n}{(n+1)n} \\
∴n(n+1)a_n & = & (n-1)n a_{n-1} \\
& = & (n-2)(n-1) a_{n-2} \\
& = & (n-3)(n-2) a_{n-3} \\
& = & \cdots \\
& = & 1 \cdot 2 \cdot a_1 \\
& = & 2 \\
∴a_n & = & \frac{2}{n(n+1)} \cdots ② \\
\end{eqnarray}
となり、②は \( n=1 \) のときも成り立つ。
\begin{eqnarray}
\sum_{k=1}^{n} a_k & = & \sum_{k=1}^{n} \frac{2}{k(k+1)} \\
& = & 2 \sum_{k=1}^{n} \left( \frac{1}{k} – \frac{1}{k+1} \right ) \\
& = & 2 \left\{ \left( \frac{1}{1} – \frac{1}{2} \right) + \left( \frac{1}{2} – \frac{1}{3} \right) + \cdots +\left( \frac{1}{n} – \frac{1}{n+1} \right) \right\} \\
& = & 2 \left( 1- \frac{1}{n+1} \right) \\
& = & \frac{2n}{n+1} \cdots (答)
\end{eqnarray}